Swimming *C. elegans* in a wet granular medium

Sunghwan Jung,1 Stella Lee,2 and Aravinthan Samuel2

1Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Harvard University, Cambridge, Massachusetts 02138, USA
(Received 17 September 2008; published online 31 December 2008)
[DOI: 10.1063/1.2996827]

C. elegans is a round worm that lives in wet soil and moves by undulating its body in a sinusoidal wave. We perform experiments on wild-type *C. elegans* swimming in a granular medium composed of 98 μm glass particles and aqueous fluid.

Figure 1 shows that a worm swims faster in a granular medium ($V \sim 0.46$ mm/s) than in a fluid without particles ($V \sim 0.37$ mm/s). *C. elegans* in a granular medium undulates at a lower frequency and with the same amplitude. We measured the Strouhal number ($St = fA/V$), a ratio of lateral to forward velocity, to characterize the surrogate efficiency of locomotion. Swimming motion in a granular medium, which more closely simulates its natural environment, is more efficient ($St \sim 0.5$) than swimming in a fluid ($St \sim 1.5$).

FIG. 1. (a) A wild-type *C. elegans* swims in a wet granular medium and (b) in a fluid.