Life prediction based on material state changes in ceramic materials

Ken Reifsnider
Mechanical Engineering
University of Connecticut
Storrs, CT 06269

Scott Case
Engineering Science and Mechanics
Virginia Tech
Blacksburg, VA 24061-0219
Outline:

- Residual Strength Modeling philosophy
- Model implementation (CCLife code)
- Development of Micromechanical Models
- Incorporation in Finite Element Analysis (*ANSYS*)
- Summary
Objectives in Lifetime Prediction

Effort:

- To develop a life-prediction method for composites based on an understanding of the relevant damage processes
- To validate the method by comparing with existing experimental evidence
Remaining Strength Predictions:

- Track remaining strength during the time-dependent process
- Define a scalar failure function based upon tensor strength and stresses; use this failure function for calculations
- May include the effects of changing loading conditions
- May be directly validated experimentally, unlike Miner’s rule
Remaining Strength Predictions:

- Track remaining strength during the time-dependent process
- Define a scalar failure function based upon tensor strength and stresses; use this failure function for calculations
- May include the effects of changing loading conditions
- May be directly validated experimentally, unlike Miner’s rule

Implication: n_1 cycles at S_a^1 is equivalent to n_2^0 cycles at S_a^2
Remaining Strength Predictions:

- Track remaining strength during the time-dependent process
- Define a scalar failure function based upon tensor strength and stresses; use this failure function for calculations
- May include the effects of changing loading conditions
- May be directly validated experimentally, unlike Miner’s rule

Failure occurs when residual strength equals applied load.
Approach for variable loading with rupture and fatigue acting:

- Divide each step of loading into time increments
- Treat each increment as a stress rupture problem (constant applied stress and temperature)
- Reduce residual strength due to time dependent damage accumulation
- Refine number of intervals until residual strength converges
- Input next load level
- Check for load reversal. If load reversal, increment by 1/2 cycle and reduce residual strength due to fatigue damage accumulation

\[
\begin{align*}
 n_2^0 &= \frac{1}{F_{a_2}} - \frac{F_{r_1}}{N_2} \\
 \Delta F_r &= -b - \frac{F_{a_2}}{N_2} n_2^0 + \frac{1}{2} \frac{F_{a_2}}{N_2} n_2
\end{align*}
\]
Implementation for Ceramic Matrix Composites: CCLife Program

- Begin with matrix stiffness reduction as a function of time and stress level
- Use a simple stress model (2-D, laminate level) to calculate failure function as a function of time, stress, and temperature
- Fit stress rupture data as a function of stress level and temperature
- Use incremental approach previously presented to sum influence of changing stresses (rupture influence)
- Adaptively refine increments until residual strength converges to some prescribed tolerance
- Account for cyclical loading by counting reversals and reducing remaining strength
- Originated under EPM program
Stiffness Reduction Data for Nicalon/E-SiC 2-D Woven Composite [0/90]_{2s}:

![Graph showing stiffness reduction data for different stress levels.](image-url)
Stress Rupture Data for Nicalon/E-SiC 2-D Woven Composite $[0/90]_{2s}$:
Stress Rupture Data for Nicalon/E-SiC 2-D Woven Composite [0/90]_2s:
Fatigue Data for Nicalon/E-SiC 2-D Woven Composite [0/90]$_{2s}$:
Residual Strength Data for Nicalon/E-SiC 2-D Woven Composite [0/90]_{2s}:

Interrupted Fatigue Test Results

\[R = -1 \]

\[\sigma_{max} = 13 \text{ ksi} \]

![Graph showing normalized remaining strength and failure function over fatigue cycles.](image)
Validation: Mission loading profile
Validation: Mission loading profile
Validation results: Trapezoidal loading profile

- Trapezoidal 1:1:1:1
- Trapezoidal 1:1:1:1 Prediction
All results for Nicalon/E-SiC 2-D Woven Composite $[0/90]_{2s}$:

Experimental Repetitions to Failure

Predicted Repetitions to Failure

- 1100°C Rupture
- 982°C Rupture
- 700°C Rupture
- 982°C Rupture
- 982°C Mission Loading
- 1100°C 0.5 Hz Fatigue
- 1100°C Trapezoidal
- 1100°C Trapezoidal
- 950°C Rupture
- 950°C Spike & Hold

[Diagram showing experimental and predicted repetitions to failure with various symbols for different conditions and temperatures.]
Validation with Oxide/Oxide System:

- Begin with fatigue tests at room temperature and stress-rupture tests at 1093°C on a Nextel 610 reinforced alumina-yttria composite.
- Represent the changes in remaining strength due to these mechanisms with a residual-strength based model.
- Create predictions based on the summation of damage due to the action of both mechanisms.
- Verify predictions with fatigue tests at 1093°C.
Basic Inputs:

- Ambient Fatigue
- 1093°C Stress-Rupture

Stress (MPa) vs. Cycles/Seconds

-5 MPa / decade
-35 MPa / decade
Fatigue Testing:

- An increase in hysteresis loop area - consistent with degradation of interface frictional stress
- A decrease in composite stiffness - associated with composite delamination
Rupture Testing:

- In stress-rupture tests there is little evidence of modulus decrease
- Strength reduction is accomplished by the degradation of the Nextel fibers
Elevated Temperature Fatigue:

Sum the changes in remaining strength due to each mechanism acting independently
Analysis of Hi-Nicalon/SiC Composite:

Attempt to relate center-hole notched composite behavior to coupon behavior

ANSYS user-programmable functions and macros used to generate stress profile, track element strength, and determine failed elements
Quasi-Static Tensile Behavior:

- **Stress (MPa)** vs. **Strain (%)**
 - **Unnotched Behavior**
 - **Notched Experiment**
 - **ANSYS Result**
Integration with FEA: SiC/SiC Recession Analysis
Summary and Conclusions:

• Life prediction analysis based on residual strength has been developed and applied to ceramic matrix composite systems.

• Validation studies include:
 – SiC/SiC composites of various geometries and loading conditions.
 – Nextel 610 reinforced alumina-yttria.

• Successful integration into commercial finite element packages.
In Memoriam:

We will continue to invent the future through our blood and tears and through all our sadness.... We will prevail....

Prof. Liviu Librescu Prof. Kevin Granata