Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method

A.J.M. Ferreira a,*, R.C. Batra b, C.M.C. Roque a, L.F. Qian c, P.A.L.S. Martins a

Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia da Universidade do Porto,
Ruas Dr. Roberto Frias, Porto 4200-465, Portugal

Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Nanjing University of Science and Technology, Nanjing 210094, PR China

Available online 13 September 2004

Abstract

The collocation multiquadric radial basis functions are used to analyze static deformations of a simply supported functionally graded plate modeled by a third-order shear deformation theory. The plate material is made of two isotropic constituents with their volume fractions varying only in the thickness direction. The macroscopic response of the plate is taken to be isotropic and the effective properties of the composite are derived either by the rule of mixtures or by the Mori–Tanaka scheme. Effects of aspect ratio of the plate and the volume fractions of the constituents on the centroidal deflection are scrutinized. When Poisson’s ratios of the two constituents are nearly equal, then the two homogenization techniques give results that are close to each other. However, for widely varying Poisson’s ratios of the two constituents, the two homogenization schemes give quite different results. The computed results are found to agree well with the solution of the problem by an alternative meshless method.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Static analysis; Functionally graded materials; Thick plate; Meshless methods; Multiquadric radial basis functions

1. Introduction

An advantage of a plate made of a functionally graded material (FGM) over a laminated plate is that material properties vary continuously in a FGM but are discontinuous across adjoining layers in a laminated plate. It eliminates at least the delamination mode of failure. Furthermore, in an FGM, material properties can be tailored to optimize the desired characteristics, e.g., minimize the maximum deflection for a given type of loads and boundary conditions, or maximize the first frequency of free vibration of the structure. Even though material properties may vary continuously in all three directions, here we limit ourselves to analyzing static deformations of a FG plate with material properties varying only in the thickness direction.

Several investigators, e.g., see [1–4], have analyzed deformations of a FG plate either by using a plate theory or three-dimensional equations of linear elasticity for an inhomogeneous body. Exact solutions for static and dynamic deformations of a FG plate are given in [5–8]. Here we use a meshless method and a third-order shear deformation plate theory. We note that Qian et al. [9–11] used the meshless local Petrov–Galerkin method (MLPG) and either two-dimensional equations of thermoelasticity or a higher-order shear and normal deformable plate theory of Batra and Vidoli [12] to analyze static and dynamic deformations of a FG plate. The MLPG method does not need even a background mesh but requires integration over a local subdomain and the determination of basis functions by say the moving least
Meshless methods for finding an approximate solution of a boundary-value problem include the element-
free Galerkin [14], hp-clouds [15], the reproducing
kernel particle [16], the smoothed particle hydrodynam-
ics [17], the diffuse element [18], the partition of unity
finite element [19], the natural element [20], meshless
galerkin using radial basis functions [21], the meshless
local Petrov–Galerkin [22], the collocation technique
employing radial basis functions [23], and the modified
smoothed particle hydrodynamics [24]. Of these, the last
three and the smoothed particle hydrodynamics method
do not require any mesh whereas others generally need a
background mesh for the evaluation of integrals appear-
ing in the weak formulation of the problem. Ferreira
[25,26] has used the collocation method with the radial
basis functions to analyze several plate and beam
problems. The applicability of the method is extended here to
analyze static deformations of a thick FG plate with a
third-order shear deformation plate theory (TSDT).

The paper is organized as follows. Section 2 briefly re-
views the finite point multiquadric method of solving an
elliptic linear boundary-value problem. Equations for a
TSDT are derived in Section 3, and two homogenization
techniques for determining effective material properties of
a composite are summarized in Section 4. Section 5
discusses results and Section 6 gives conclusions.

2. The finite point multiquadric method

Consider the following linear elliptic boundary-value
problem defined on a smooth domain \(\Omega \):

\[
Lu(x) = s(x), \quad x \in \Omega, \\
Bu(x) = f(x), \quad x \in \partial \Omega, \tag{2.1}
\]

where \(\partial \Omega \) is the boundary of \(\Omega \), \(L \) and \(B \) are

differential operators, and \(s \) and \(f \) are smooth functions
defined on \(\Omega \) and \(\partial \Omega \) respectively. We select \(N_B \) points
\(x^{(j)}, j = 1, \ldots, N_B \) on \(\partial \Omega \) and \((N - N_B) \) points
\(x^{(j)}, j = N_B + 1, N_B + 2, \ldots, N \) in the interior of \(\Omega \). Let

\[
L(x) = \sum_{j=1}^{N_B} a_j g(||x - x^{(j)}||, c) \tag{2.2}
\]

be an approximate solution of the boundary-value prob-
lem where \(a_1, a_2, \ldots, a_N \) are constants to be determined,
\(\|x - x^{(0)}\| \) is the Euclidean distance between points \(x \) and
\(x^{(0)} \), \(c \) is a constant, and \(g \) is a function of \(\|x - x^{(0)}\| \) and
(2.3)
c. Different forms of functions \(g \) and names associated
with them are

Multiquadrics:

\[
g_j(x) = (\|x - x^{(j)}\|^2 + c^2)^{1/2},
\]

Inverse Multiquadrics:

\[
g_j(x) = (\|x - x^{(j)}\|^2 + c^2)^{-1/2},
\]

Gaussian:

\[
g_j(x) = e^{-c^2||x - x^{(j)}||^2},
\]

Thin plate splines:

\[
g_j(x) = \|x - x^{(j)}\|^2 \log \|x - x^{(j)}\|.
\]

Substitution from (2.2) into (2.1) and evaluating the
resulting form of Eq. (2.1) at the \(N_B \) points \(x^{(j)} \),
\(j = 1, \ldots, N_B \), and of Eq. (2.1) at \((N - N_B) \) points
\(x^{(j)}, j = N_B + 1, N_B + 2, \ldots, N \) give the following \(N \) alge-
braic equations for the determination of \(a_1, a_2, \ldots, a_N \).

\[
\sum_{j=1}^{N_B} a_j g(||x - x^{(j)}||, c) \bigg|_{x = x^{(i)}} = s(x^{(i)}), \quad i = 1, 2, \ldots, N_B, \tag{2.4}
\]

\[
\sum_{j=1}^{N - N_B} a_j g(||x - x^{(j)}||, c) \bigg|_{x = x^{(i)}} = f(x^{(i)}), \quad i = 1, 2, \ldots, N_B.
\]

Depending upon the value of the parameter \(c \) and the
form of function \(g \), the set of Eqs. (2.4) that determines
\(a_1, a_2, \ldots, a_N \) may become ill-conditioned; e.g. see [27].
Also, the computational effort involved in solving (2.4)
for \(a_1, a_2, \ldots, a_N \) varies with the choice of the function
\(g \). Once Eqs. (2.4) have been solved for \(a \)'s, then the
approximate solution of the problem is given by (2.2).

3. Review of the third-order shear deformation plate
theory

The displacement field in the TSDT is given by

\[
\begin{align*}
(u(x, y, z) &= u_0(x, y) + z \phi_x - c_1 z^3 \left(\phi_x + \frac{\partial w}{\partial x} \right), \\
v(x, y, z) &= v_0(x, y) + z \phi_y - c_1 z^3 \left(\phi_y + \frac{\partial w}{\partial y} \right), \\
w(x, y, z) &= w_0(x, y),
\end{align*}
\]

where \(c_1 = 4(3h^2) \), \(h \) is the plate thickness, \(z \) is the coor-
dinate in the thickness direction, and the \(xy \)-plane of the
rectangular Cartesian coordinate system is located in the
midplane of the plate. Functions \(\phi_x \) and \(\phi_y \) describe
rotations about the x- and the y-axes of a line that is
along the normal to the midsurface of the plate, \(u_0, v_0 \)
and \(w_0 \) give displacements of a point on the midsurface
of the plate along the x-, y- and z-axes respectively. The
constant \(c_1 \) is determined by requiring that the transverse
shear strain vanishes on the top and the bottom surfaces of the plate. Batra and Vidoli [12] have pro-
posed a mixed higher-order shear and normal deforma-
tion plate theory in which natural boundary conditions
prescribed on the top and the bottom surfaces of the plate
are exactly satisfied.

From the strain–displacement relations appropriate
for infinitesimal deformations, we obtain

\[
\begin{align*}
\begin{pmatrix}
 e_{xx} \\
 e_{yy} \\
 2e_{xy} \\
 2e_{xz} \\
 2e_{yz}
\end{pmatrix}
= &
\begin{pmatrix}
 e_{xx}^{(0)} \\
 e_{yy}^{(0)} \\
 e_{xy}^{(0)} \\
 e_{xz}^{(0)} \\
 e_{yz}^{(0)}
\end{pmatrix} + z
\begin{pmatrix}
 e_{xx}^{(1)} \\
 e_{yy}^{(1)} \\
 e_{xy}^{(1)} \\
 e_{xz}^{(1)} \\
 e_{yz}^{(1)}
\end{pmatrix} + z^2
\begin{pmatrix}
 e_{xx}^{(2)} \\
 e_{yy}^{(2)} \\
 e_{xy}^{(2)} \\
 e_{xz}^{(2)} \\
 e_{yz}^{(2)}
\end{pmatrix},
\end{align*}
\]

(3.2)

where

\[
\begin{align*}
\begin{pmatrix}
 e_{xx}^{(0)} \\
 e_{yy}^{(0)} \\
 e_{xy}^{(0)} \\
 e_{xz}^{(0)} \\
 e_{yz}^{(0)}
\end{pmatrix} = &
\begin{pmatrix}
 \frac{\partial u}{\partial x} \\
 \frac{\partial u}{\partial y} \\
 \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\
 \frac{\partial u}{\partial z} + \phi_x \\
 \frac{\partial v}{\partial z}
\end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
 e_{xx}^{(1)} \\
 e_{yy}^{(1)} \\
 e_{xy}^{(1)} \\
 e_{xz}^{(1)} \\
 e_{yz}^{(1)}
\end{pmatrix} = &
\begin{pmatrix}
 \frac{\partial \phi_x}{\partial x} \\
 \frac{\partial \phi_y}{\partial y} \\
 \frac{\partial \phi_y}{\partial x} + \frac{\partial \phi_x}{\partial y} \\
 \frac{\partial \phi_z}{\partial x} \\
 \frac{\partial \phi_z}{\partial y}
\end{pmatrix},
\end{align*}
\]

(3.3)

\[
\begin{align*}
\begin{pmatrix}
 e_{xx}^{(2)} \\
 e_{yy}^{(2)} \\
 e_{xy}^{(2)} \\
 e_{xz}^{(2)} \\
 e_{yz}^{(2)}
\end{pmatrix} = &
- c_1
\begin{pmatrix}
 \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} \\
 \frac{\partial \phi_y}{\partial x} + \frac{\partial \phi_x}{\partial y} \\
 \frac{\partial \phi_z}{\partial x} \\
 \frac{\partial \phi_z}{\partial y}
\end{pmatrix}.
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
 e_{xx} \\
 e_{yy} \\
 e_{xy} \\
 e_{xz} \\
 e_{yz}
\end{pmatrix} = &
\begin{pmatrix}
 \sigma_{xx} \\
 \sigma_{yy} \\
 \sigma_{xy} \\
 \sigma_{xz} \\
 \sigma_{yz}
\end{pmatrix}
\]

\[
\begin{align*}
\begin{pmatrix}
 \sigma_{xx} \\
 \sigma_{yy} \\
 \sigma_{xy} \\
 \sigma_{xz} \\
 \sigma_{yz}
\end{pmatrix} = &
\begin{pmatrix}
 Q_{11} & Q_{12} & 0 & 0 & 0 \\
 Q_{12} & Q_{11} & 0 & 0 & 0 \\
 0 & 0 & Q_{33} & 0 & 0 \\
 0 & 0 & 0 & Q_{33} & 0 \\
 0 & 0 & 0 & 0 & Q_{33}
\end{pmatrix}
\end{align*}
\]

(3.7)

where \(\sigma_{xx}, \sigma_{yy}, \sigma_{xy}, \sigma_{xz}, \sigma_{yz} \) are components of the stress, and \(f_x, f_y, f_z \) are surface tractions acting on the bounding
surfaces of the plate. Note that body forces have been
neglected.

Substitution from (3.2) and (3.3) into (3.4), integra-
tion of the resulting equation with respect to \(z \) from
\(-h/2 \) to \(h/2 \), and recalling that \(\delta u, \delta v, \delta w, \delta \phi_x \) and \(\delta \phi_y \) are arbitrary except at points where \(u, v, w, \phi_x, \phi_y \) are prescribed, we obtain the following equations for
the plate theory:

\[
\begin{align*}
\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} + f &= 0, \\
\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{yy}}{\partial y} &= 0, \\
\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} &= 0, \\
\frac{\partial M_{xy}}{\partial x} + \frac{\partial M_{yy}}{\partial y} &= 0,
\end{align*}
\]

(3.5)

where

\[
\begin{align*}
N_{ab} &= M_{ab} - c_1 P_{ab}, \\
\bar{Q}_a &= \bar{Q}_a - 3c_1 R_x, \quad a, b = x, y, \\
(N_{ab}, M_{ab}, P_{ab}) &= \int_{-h/2}^{h/2} (1, z, z^2) \sigma_{ab} \, dz, \\
(\bar{Q}_a, R_x) &= \int_{-h/2}^{h/2} (1, z, z^2) \sigma_{ac} \, dz,
\end{align*}
\]

(3.6)

\[
\begin{align*}
f &= f_x^+ + f_x^-, \\
f_y^+ \text{ and } f_y^- \text{ equal normal surface tractions acting on the top and the bottom surfaces of the plate. In this plate theory, } f_x^+ \text{ and } f_x^- \text{ must identically vanish on the top and the bottom surfaces of the plate.}
\end{align*}
\]

Expressions for \(M_{ab}, N_{ab}, P_{ab}, Q_a, \) and \(R_x \) in terms of
strains can be derived by substituting into (3.6) from the following stress-strain relation for an isotropic
material:

\[
\begin{align*}
\begin{pmatrix}
 \sigma_{xx} \\
 \sigma_{yy} \\
 \sigma_{xy} \\
 \sigma_{xz} \\
 \sigma_{yz}
\end{pmatrix} = &
\begin{pmatrix}
 Q_{11} & Q_{12} & 0 & 0 & 0 \\
 Q_{12} & Q_{11} & 0 & 0 & 0 \\
 0 & 0 & Q_{33} & 0 & 0 \\
 0 & 0 & 0 & Q_{33} & 0 \\
 0 & 0 & 0 & 0 & Q_{33}
\end{pmatrix}
\end{align*}
\]

where

\[
\begin{align*}
Q_{11} &= E/(1 - v^2), \quad Q_{12} = vE/(1 - v^2), \quad Q_{33} = E/(2(1 + v)),
\end{align*}
\]

(3.8)

\(E \) is the effective Young’s modulus and \(v \) the effective
Poisson’s ratio at a point in a FG plate.

Substitution for strains in terms of displacements
from (3.3) into (3.7), for stresses from (3.7) into (3.6),
for \(M_{xy} \), \(N_{xy} \) etc. from (3.6) into (3.5) yield equilibrium equations in terms of the generalized displacements \(u_0, v_0, w_0, \phi_x \) and \(\phi_y \); these equations are summarized in Appendix A. An approximate solution of these equations and the pertinent boundary conditions is found by using the meshless method described in Section 2. That is, we assume that

\[
\begin{align*}
\bar{u}_0(x) &= \sum_{j=1}^{N} a_j^u g(\|x - x^{(j)}\|, c), \\
\bar{v}_0(x) &= \sum_{j=1}^{N} a_j^v g(\|x - x^{(j)}\|, c), \text{ etc.}
\end{align*}
\]

(3.9)

These expressions are substituted in equilibrium equations listed in Appendix A, and also in relevant boundary conditions.

Boundary conditions at a simply supported edge, \(x = a \), are

\[
\begin{align*}
w_0(a, y) &= 0, & v_0(a, y) &= 0, & \phi_y(a, y) &= 0, \\
N_{xx}(a, y) &= 0, & M_{xy}(a, y) &= 0.
\end{align*}
\]

(3.10)

Boundary conditions imposed at a rigidly clamped edge, \(y = b \), are

\[
\begin{align*}
u_0(x, b) &= 0, & \phi_x(x, b) &= 0, & w_0(x, b) &= 0, & \phi_y(x, b) &= 0.
\end{align*}
\]

(3.11)

4. Homogenization of material properties

We assume that the plate is made of two randomly distributed isotropic constituents, the macroscopic response of the composite is isotropic, and the composition of the composite varies only in the \(z \)-direction. Qian and Batra [28] have studied free vibrations of a FG plate with material properties varying smoothly in two directions. The volume fraction of constituent 1 is given by

\[V_1 = \left(\frac{1}{2} + \frac{z}{h} \right)^p. \]

(4.1)

Thus \(V_1 = 0 \) at the bottom surface \(z = -h/2 \) and \(V_1 = 1 \) at the top surface \(z = h/2 \) of the plate. Fig. 1 depicts the through-the-thickness distribution of the volume fraction of phase 1 for different values of \(p \).

Two homogenization techniques are used to find the effective properties at a point. According to the rule of mixtures, the effective property \(P \), at a point is given by

\[
P = P_1 V_1 + P_2 V_2,
\]

(4.2)

where \(V_1 \) and \(V_2 = 1 - V_1 \) are the volume fractions of constituents 1 and 2 respectively, and \(P_1 \) and \(P_2 \) are values of \(P \) for the two constituents.

According to the Mori–Tanaka [29] homogenization method the effective bulk modulus, \(K \), and the effective shear modulus, \(G \), of the composite are given by

\[
\begin{align*}
\frac{K - K_1}{K_2 - K_1} &= \frac{V_2}{1 + (1 - V_2) \frac{K_2 - K_1}{K_1 + K_2}}, \\
\frac{G - G_1}{G_2 - G_1} &= \frac{V_2}{1 + (1 - V_2) \frac{G_2 - G_1}{G_1 + G_2}}.
\end{align*}
\]

(4.3)

![Fig. 1. Through-the-thickness distribution of the volume fraction of phase 1 for different values of the exponent \(p \) in Eq. (4.1).](image-url)
where \(f_1 = \frac{G_1(9K_1+8G_1)}{6(K_1+2G_1)} \). The effective values of Young’s modulus, \(E \), and Poisson’s ratio, \(\nu \), are found from
\[
E = \frac{9KG}{3K + G}, \quad \nu = \frac{3K - 2G}{2(3K + G)}.
\]

5. Computation and discussion of results

The results for a simply-supported FG plate comprised of aluminum (\(E_1 = 70 \) GPa, \(\nu_1 = 0.3 \)) and a ceramic (\(E_2 = 151 \) GPa, \(\nu_2 = 0.3 \)) are firstly compared and then for an aluminum/silicon carbide plate; for SiC, \(E = 427 \) GPa, \(\nu = 0.17 \). The first composite material is referred to as FGM1 and the second as FGM2. Computed results for the FGM2 plate are compared with the solution of Qian et al. \([9]\). In the Tables and Figures to follow, the vertical or transverse displacement \(w \), the axial stress \(\sigma_{xx} \), the thickness coordinate \(z \), and the pressure \(q \) applied on the top surface of the plate have been non-dimensionalized as follows:
\[
\bar{w} = \frac{w}{h}, \quad \bar{\sigma}_{xx} = \frac{\sigma_{xx}}{q}, \quad \bar{q} = \frac{q}{E_1h^4}, \quad \bar{z} = \frac{z}{h}.
\]
Henceforth the superimposed bar has been dropped. Results are presented for a square plate and equal number of collocation points uniformly spaced in the \(x \)- and the \(y \)-directions are used. We employ multiquadrics radial basis functions defined by Eq. (2.3) 1 with \(c \) equal to either \(1/\sqrt{Na} \) or \(2/\sqrt{Na} \) where \(Na \) is the number of collocation points in either \(x \)- or \(y \)-direction.

Fig. 2a and b depicts, for \(p = 0, 1, 2 \) and 6 in Eq. (4.1), the through-the-thickness variations of the effective Young’s modulus, and the effective Poisson’s ratio as computed by the rule of mixtures and the Mori–Tanaka scheme for the FGM2 plates. For both FGM1 and FGM2 plates, and with \(p = 2 \), values of the effective moduli obtained from the rule of mixture differ noticeably from those derived from the Mori–Tanaka scheme; the difference between the two sets of moduli for other values of \(p \) are less evident.

For \(Na = 11 \) and 19, we have compared in Table 1 the centroidal deflections of a simply supported square FGM1 plate. For \(p = 0, 0.5, 1.0, 2.0 \) and \(1 \), the centroidal deflection computed with \(Na = 11 \) differs from that computed with \(Na = 19 \) by less than 1.5%. Furthermore, these deflections differ from those computed by the MLPG code of Qian, Batra and Chen \([9]\) by less than 3%; the difference being smaller for \(Na = 19 \). Results presented below have been computed with \(Na = 15 \).

![Fig. 2. Through-the-thickness variations of the effective Young's modulus, and Poisson's ratio computed by the rule of mixtures and the Mori–Tanaka scheme for (a) FGM1 and (b) FGM2 plates with \(p = 0, 1, 2 \) and 6 in Eq. (4.1).](image-url)
For thick \((a/h = 5)\), FGM1 and FGM2 simply supported square plates. Table 2 compares the centroidal deflections with effective moduli derived by the two homogenization schemes. It is transparent that the two homogenization schemes give results that are close to each other for the FGM1 plate but are quite different for the FGM2 plate. Note that Poisson’s ratios of the two constituents of the FGM1 plate are nearly equal but are quite different for the FGM2 plate. Note that for each plate, the presently computed centroidal deflection compares very well with that obtained by the MLPG code of Qian, Batra and Chen [9] that uses the Mori–Tanaka homogenization scheme. Results computed with the MLPG method agreed very well with the analytical solution of Vel and Batra [5,6].

In order to delineate the effect of the parameter \(c\) in Eq. (2.3), we have compared in Table 3 centroidal deflections of the square FGM1 plate for \(c = 1/\sqrt{15}\) and \(c = 2/\sqrt{15}\) with those computed from the MLPG code of Qian, Batra and Chen [9]. These results evince

Table 1
For \(N_a = 11\) and 19, comparison of the centroidal deflection of a simply supported square FGM1 plate with effective elastic moduli computed by the rule of mixtures and the Mori–Tanaka scheme

<table>
<thead>
<tr>
<th>Exponent, (p) in Eq. (4.1)</th>
<th>Non-dimensional centroidal deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effective properties by rule of mixtures</td>
</tr>
<tr>
<td>(0)</td>
<td>0.02050 (0.02080)</td>
</tr>
<tr>
<td>(0.5)</td>
<td>0.02620 (0.02650)</td>
</tr>
<tr>
<td>(1.0)</td>
<td>0.02940 (0.02970)</td>
</tr>
<tr>
<td>(2.0)</td>
<td>0.03230 (0.03240)</td>
</tr>
<tr>
<td>Metal</td>
<td>0.04430 (0.0448)</td>
</tr>
</tbody>
</table>

Load parameter = 1, aspect ratio \(a/h\) of plate = 20, \(c = 2/\sqrt{N_a}\). Results for \(N_a = 19\) are in parentheses.

Table 2
For \(a/h = 5\), \(N_a = 15\), and load parameter = 1, comparison of the centroidal deflection of a simply supported square FGM1 and FGM2 plates with effective elastic moduli computed by the rule of mixtures and the Mori–Tanaka scheme

<table>
<thead>
<tr>
<th>Exponent, (p) in Eq. (4.1)</th>
<th>Non-dimensional centroidal deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effective properties by rule of mixtures</td>
</tr>
<tr>
<td>((a)) FGM1</td>
<td></td>
</tr>
<tr>
<td>(0.0)</td>
<td>0.02477</td>
</tr>
<tr>
<td>(0.5)</td>
<td>0.03135</td>
</tr>
<tr>
<td>(1.0)</td>
<td>0.03515</td>
</tr>
<tr>
<td>(2.0)</td>
<td>0.03883</td>
</tr>
<tr>
<td>Metal</td>
<td>0.05343</td>
</tr>
<tr>
<td>((b)) FGM2</td>
<td></td>
</tr>
<tr>
<td>(0.0)</td>
<td>–0.007676</td>
</tr>
<tr>
<td>(0.5)</td>
<td>–0.011973</td>
</tr>
<tr>
<td>(1.0)</td>
<td>–0.015967</td>
</tr>
<tr>
<td>(2.0)</td>
<td>–0.021603</td>
</tr>
<tr>
<td>Metal</td>
<td>–0.053426</td>
</tr>
</tbody>
</table>

Table 3
For \(c = 1/\sqrt{15}\) and \(2/\sqrt{15}\), comparison of the centroidal deflection of a simply supported square FGM1 plate with effective elastic moduli computed by the Mori–Tanaka scheme

<table>
<thead>
<tr>
<th>(a/h)</th>
<th>MLPG, 8 \times 8 grid</th>
<th>Present formulation, (c = 1/\sqrt{N_a})</th>
<th>Present formulation, (c = 2/\sqrt{N_a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 0)</td>
<td>(p = 1.0)</td>
<td>(p = 2.0)</td>
<td>Metal</td>
</tr>
<tr>
<td>5</td>
<td>0.02436</td>
<td>0.03634</td>
<td>0.03976</td>
</tr>
<tr>
<td>15</td>
<td>0.02115</td>
<td>0.03152</td>
<td>0.03401</td>
</tr>
<tr>
<td>25</td>
<td>0.02123</td>
<td>0.03158</td>
<td>0.03404</td>
</tr>
<tr>
<td>45</td>
<td>0.02158</td>
<td>0.03203</td>
<td>0.03456</td>
</tr>
<tr>
<td>75</td>
<td>0.02190</td>
<td>0.03252</td>
<td>0.03501</td>
</tr>
<tr>
<td>125</td>
<td>0.02225</td>
<td>0.03304</td>
<td>0.03562</td>
</tr>
</tbody>
</table>

Load factor = –1.
that $c = 2/\sqrt{15}$ should be used for thin plates. For plates with $ah \leq 15$, $c = 1/\sqrt{15}$ gives good results and the accuracy of the computed centroidal deflection deteriorates with an increase in the aspect ratio. We note that Fasshauer’s [23] suggestion of using $c = 2/\sqrt{N_e}$ is supported by our numerical experiments.

For different values of the index p in Eq. (4.1) and the aspect ratio ah, Table 4 compares the axial stress, σ_{xx}, at centroids of the top and the bottom surfaces of the simply supported square FGM1 plate. The stress computed from the present formulation compares well with that obtained from the MLPG code of Qian, Batra and Chen [9].

Fig. 3 exhibits through-the-thickness variation of the non-dimensional axial stress σ_{xx}. Except for very large or very small values of p, the axial stress varies smoothly through the plate thickness. For $p = 0.2$, there is a sharp gradient in σ_{xx} near the bottom surface of the plate, and for $p = 300$ there is a steep gradient in σ_{xx} near the top surface. This is caused by the sharp variation in the material properties near the top and the bottom surfaces of the plate for $p = 0.2$ and 300.

6. Conclusions

The meshless collocation method, the multiquadric radial basis functions and a third-order shear deformation theory have been used to analyze static deformations of functionally graded square plates of different aspect ratios. Two homogenization techniques, namely, the rule of mixture and the Mori–Tanaka scheme, have been used to find effective moduli of the composite. Computed results are found to agree well with those
obtained from the meshless local Petrov–Galerkin (MLPG) code of Qian, Batra and Chen. Both the collocation and the MLPG methods result in asymmetric “stiffness” matrices. The CPU time required to solve the problem with the collocation method is considerably less than that needed for the MLPG code mainly because no numerical integration is needed in the collocation scheme.

For widely varying Poisson’s ratios of the two constituents of the FG plate, the two homogenization techniques give quite different results. Our numerical experiments suggest that the parameter c in the expression for the multiquadratic radial basis functions should equal $2/\sqrt{N_o}$ where N_o equals the number of collocation points in the x- or the y-direction.

Appendix A

Equations for the determination of the generalized displacements u_0, v_0, w_0, ϕ_3 and ϕ_4 of a TSDT are listed below.

\[
A_{11} \frac{\partial^2 u_0}{\partial x^2} + A_{12} \frac{\partial^2 v_0}{\partial y^2} + B_{11} \frac{\partial^2 \phi_3}{\partial x^2} + B_{12} \frac{\partial^2 \phi_4}{\partial x^2} + \frac{4}{3h^2} E_{11} \left(\frac{\partial^2 \phi_3}{\partial x^2} + \frac{\partial^2 w_0}{\partial x^2} \right) + \frac{4}{3h^2} E_{21} \left(\frac{\partial^2 \phi_4}{\partial y^2} + \frac{\partial^2 w_0}{\partial y^2} \right) = 0, \tag{A.1}
\]

\[
A_{11} \frac{\partial^2 v_0}{\partial y^2} + A_{12} \frac{\partial^2 u_0}{\partial x^2} + B_{11} \frac{\partial^2 \phi_4}{\partial y^2} + B_{12} \frac{\partial^2 \phi_3}{\partial y^2} + 2A_{31} \frac{\partial^3 w_0}{\partial x^2 \partial y} = 0, \tag{A.2}
\]

\[
A_{33} \left(\frac{\partial^2 u_0}{\partial y^2} + \frac{\partial^2 v_0}{\partial x^2} \right) + B_{31} \left(\frac{\partial^2 \phi_3}{\partial y^2} + \frac{\partial^2 \phi_4}{\partial x^2} \right) + \frac{4}{3h^2} E_{31} \left(\frac{\partial^2 \phi_3}{\partial y^2} + \frac{\partial^2 \phi_4}{\partial y^2} \right) + 2A_{31} \frac{\partial^3 w_0}{\partial y^2 \partial x} = 0, \tag{A.3}
\]

\[
A_{33} \left(\frac{\partial^2 v_0}{\partial y^2} + \frac{\partial^2 u_0}{\partial x^2} \right) + B_{31} \left(\frac{\partial^2 \phi_4}{\partial y^2} + \frac{\partial^2 \phi_3}{\partial x^2} \right) + \frac{4}{3h^2} E_{31} \left(\frac{\partial^2 \phi_4}{\partial y^2} + \frac{\partial^2 \phi_3}{\partial y^2} \right) + 2A_{31} \frac{\partial^3 w_0}{\partial y^2 \partial x} = 0. \tag{A.4}
\]
\[
\frac{4}{3h^2} F_{22} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) - \frac{4}{3h^2} F_{22} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + F_{22} \frac{\partial^2 \phi_y}{\partial y^2} = \frac{4}{3h^2} H_{22} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) - \frac{4}{3h^2} F_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + F_{33} \frac{\partial^2 \phi_y}{\partial y^2} + \frac{4}{3h^2} H_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) + D_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) + \frac{4}{3h^2} F_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) + D_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right) + \frac{4}{3h^2} H_{33} \left(\frac{\partial^2 \phi_y}{\partial y^2} + \frac{\partial^3 \psi_y}{\partial y^3} \right)
\]

where

\[
(A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, H_{ij}) = \int_{-l/2}^{l/2} \left(P_r - P_0 \right) \left(\frac{z}{h} + \frac{1}{2} \right)^n \left(1, z, z^2, z^3, z^4, z^5 \right) \, dz. \tag{A.5}
\]

\[
\frac{1}{3h^2} \sum_{i,j} A_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + \frac{1}{3h^2} \sum_{i,j} B_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + \frac{1}{3h^2} \sum_{i,j} D_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + \frac{1}{3h^2} \sum_{i,j} E_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + \frac{1}{3h^2} \sum_{i,j} F_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) + \frac{1}{3h^2} \sum_{i,j} H_{ij} \left(\frac{\partial^2 \phi_y}{\partial y^2} \right) = \frac{1}{h^2} = 0.
\]

References