Torsion of a Functionally Graded Cylinder

R. C. Batra*
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061

I. Introduction

FUNCTIONALLY graded structures are inhomogeneous bodies usually composed of two constituents whose volume fractions vary continuously throughout the body so as to attain a specific variation of material moduli that minimize a critical design variable, for example, the maximum principal tensile stress or the maximum strain energy density. Lekhnitskii’s book has solutions to many linear elastic problems for inhomogeneous materials. Truesdell and Noll’s books provide solutions for nonlinear elastic incompressible and inhomogeneous materials, but no specific problem is analyzed. Batra’s paper has an explicit solution for the radial expansion of a circular Mooney–Rivlin cylinder with material moduli depending upon the radial coordinate. However, interest in functionally graded materials (FGMs) seemed to originate from the first International Symposium on FGMs. Most of the studies on FGMs are limited to composites made of two isotropic linear elastic materials with the composite’s response also being modeled as isotropic and linear elastic. Exceptions to this include recent works in which the constituents and the composite are assumed to be isotropic heat-conducting thermoviscoelastic materials, and the overall response of the body is also taken to be isotropic and thermoviscoelastic. Qian and Batra have studied linear elastic FGMs with the material response varying continuously within the plane of deformation and found the compositional profile so as to optimize the first fundamental frequency of a cantilever beam. Batra and Jin considered the angle of fiber orientation as a variable and found its variation in the thickness direction so as to optimize the fundamental frequency of an orthotropic plate.

Analytical solutions of the torsion and the flexure of FG bars have been given by Rooney and Ferrari; they assumed that the elastic moduli are smooth functions of coordinates of a point within a cross section. Horgan and Chan solved the torsion problem analytically for prismatic bodies with special focus on the torsion of a circular cylinder whose moduli depend upon the radial coordinate of a point. Vel and Batra have provided analytical solutions for static or quasi-static deformations of FG isotropic thermoeelastic plates; for the latter case the thermal problem studied is transient, but the effect of inertia forces in the mechanical problem is neglected. Numerous references are cited in the aforementioned papers. Qian and Batra have analyzed numerically transient heat conduction, and transient thermomechanical deformations in a thick FG plate by using a higher-order shear and normal deformable plate theory of Batra and Vidoli. Cheng and Batra have provided a closed-form solution to thermoelastic deformations of a rigidly clamped elliptic plate and have related the deflection of a FG plate to that of a homogeneous Kirchhoff plate and frequencies of a FG plate to that of a membrane.

Here we analyze analytically the torsion of a circular cylindrical bar made of either an isotropic compressible or an isotropic incompressible linear elastic material with material moduli varying only in the axial direction. Thus each cross section is made of one material, but the material of one cross section is different from that of its adjoining one. Results for the incompressible material are relevant to rubber-like cylinders and cylinders composed of biological materials. Results are also obtained for a transversely isotropic material.

II. Formulation of the Problem

In the absence of body forces and in rectangular Cartesian coordinates, static deformations of a body are governed by the following balance of linear momentum:

\[ T_{ij,j} = 0, \quad i, j = 1, 2, 3 \]  \hspace{1cm} (1)

Here \( T = T' \) is the Cauchy stress tensor, \( T_{ij,j} = \partial T_{ij}/\partial x_j \), a repeated index implies summation over the range of the index, and \( x \) gives the position of a material particle in the present configuration that occupied the place \( X \) in the reference configuration. As shown in Fig. 1, we assume that the origin of the rectangular Cartesian coordinate axes is located at the centroid of the left end and the \( x_3 \) axis is aligned along its centroidal axis. The symmetry of \( T \) implies that the balance of moment of momentum is identically satisfied. The constitutive relation for a compressible linear elastic isotropic material is

\[ T_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij}, \quad e_{ij} = (u_{i,j} + u_{j,i})/2 \]  \hspace{1cm} (2)

where \( u = x - X \) is the displacement of a material point, \( \delta \) is the Kronecker delta, \( \epsilon \) is the infinitesimal strain tensor, and \( \lambda \) and \( \mu \) are Lamé constants that satisfy \( \mu > 0 \) and \( 3\lambda + 2\mu > 0 \). Substitution for \( \epsilon \) from the second equation of Eqs. (2) into the first equation of Eqs. (2) and then for \( T \) into Eq. (1) gives Navier’s equations

\[ (\lambda u_{i,k})_{,k} + [\mu(u_{i,j} + u_{j,i})]_j = 0 \]  \hspace{1cm} (3)

For a cylinder with traction-free mantle and loaded on the opposite end faces by equal and opposite (see Fig. 1) tractions that have

---

Received 18 August 2005; revision received 18 November 2005; accepted for publication 10 January 2006. Copyright © 2006 by R. C. Batra. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/06 $10.00 in correspondence with the CCC.

*Clifton C. Garvin Professor, MC 0219, Department of Engineering Science and Mechanics; rbatra@vt.edu.
null resultant but a nonzero moment about the $x_3$ axis, boundary conditions are

$$T_{ij}n_j = 0 \quad \text{on the mantle}$$

$$\int_A T_{ij} \, dA = 0, \quad i = 1, 2, 3, \quad x_3 = 0, L$$

$$\int_A e_{ijk} x_i T_{kij} \, dA = M_b, \quad i = 1, 2, 3, \quad x_3 = 0, L$$  \hspace{1em} (4)

Here $A$ is the cross-sectional area, $M_b$ the torque applied at the end faces $x_3 = 0$ and $x_3 = L$, $n$ a unit vector normal to the cylinder surface, and $e_{ijk}$ is the permutation symbol or the alternating tensor.

When the cylinder material is incompressible, the body can undergo only isochoric (or volume preserving) deformations for which

$$e_{ik} = 0, \quad T_{ij} = -p \delta_{ij} + 2\mu e_{ij}$$  \hspace{1em} (5)

where $p$ is the hydrostatic pressure not determined by the deformation field. Substitution for $e$ from the second equation of Eqs. (2) into Eq. (5) and the result into Eq. (1) gives

$$u_{ik} = 0, \quad -p_i + [\mu(u_{ij} + u_{ji})]_j = 0$$  \hspace{1em} (6)

The four unknowns $p, u_1, u_2, u_3$ are determined by Eqs. (6) and boundary conditions (4).

For a transversely isotropic compressible material with the axis of transverse isotropy coincident with the $x_3$ axis, the constitutive relation (2) [first equation of Eqs. (2)] is replaced by

$$T_{ij} = C_{ijkl} e_{kl}$$  \hspace{1em} (7)

where the elasticity matrix $[C]$ in the contracted notation has the form

$$[C] = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{bmatrix}
$$

$$C_{66} = \frac{(C_{11} - C_{44})}{2}$$  \hspace{1em} (8)

For a transversely isotropic incompressible material, Eq. (7) becomes

$$T_{ij} = -p \delta_{ij} + C_{ijkl} e_{kl}$$  \hspace{1em} (9)

and the elasticity matrix $[C]$ is given by Eq. (8).

### III. Analytical Solutions

We use the semi-inverse method, that is, we presume the displacement field in terms of an unknown variable that is found from the equilibrium equations and the boundary conditions. Because of the uniqueness theorem in linear elasticity, the solution so found is unique within a superimposed rigid-body motion, for example, see Batra.\(^{10}\) We presume that material parameters depend on $x_3$ or $X_3$ only, and plane sections remain plane. That is, under the action of the applied torque one section rotates with respect to its adjoining one.

#### A. Cylinder Material Isotropic and Compressible

For infinitesimal rotations of a cross section, the displacement field is given by

$$u_1 = -\theta X_2, \quad u_2 = \theta X_1, \quad u_3 = 0$$  \hspace{1em} (10)

where $\theta(X_3)$ is the rotation of a cross section with respect to that of the left end face. Substitution for $u$ from Eq. (10) into Eq. (3) gives

$$(\mu \theta')' = 0$$  \hspace{1em} (11)

where a prime denotes differentiation with respect to $X_1$. Setting $\tau = \theta'$, the angle of twist per unit length, and integrating Eq. (11), we get

$$\mu \tau = \text{constant}, \quad \beta$$  \hspace{1em} (12)

For a homogeneous cylinder, $\mu = \text{constant}$; thus, $\tau = \text{constant}$. For a FG cylinder the variation of the shear modulus $\mu$ in the axial direction can be adjusted to control the angle of twist of any cross section.

One can easily show that stresses computed from the displacement field (10) satisfy boundary conditions (4) provided that

$$M_b = \mu (L) \tau (L) J = \beta J$$  \hspace{1em} (13)

where $J$ is the polar moment of inertia of the cross section and equals $\pi R^2/4$, $R$ being the radius of the cylinder. Assuming that $\theta(0) = 0$, the angle of twist $\theta$ of the cross section $X_3 = \text{constant}$ is given by

$$\theta(X_3) = \int_0^{X_3} \frac{\beta}{\mu(s)} \, ds$$  \hspace{1em} (14)

For $\mu(X_3) = (a + b X_3)^n$, where $a, b, n$ are constants, Eq. (14) gives

$$\theta(X_3) = \begin{cases}
-\beta \frac{a}{b \ln(a + b X_3)} \left[(-n + 1)b X_3^{\frac{(-n + 1)b}{a}} - (-n + 1)b X_3^n\right], & n \neq 0 \\
\frac{\beta}{b X_3^n} (a + b X_3)^{-n}, & n = 1
\end{cases}$$  \hspace{1em} (15)

where $\beta = M_b / (a + b L)^n$. When $\mu(X_3) = a e^{-b X_3}$, with $a$ and $b$ being constants,

$$\theta(X_3) = \frac{\beta}{ab}(e^{b X_3} - 1)$$  \hspace{1em} (16)

where $\beta = M_b / (a e^{-b})$. Recalling that the maximum shear stress at a point is given by $\mu \tau r$ where $r^2 = X_1^2 + X_2^2$, we can find one out of the three constants $a$, $b$, and $n$ in Eq. (15) to optimize either the angle of twist or the maximum shear stress at a given cross section; however, $\mu$ must always be positive. Similarly, from Eq. (16) one can find $b$ so that either $\theta$ or the maximum shear stress at a cross section has the desired value.

#### B. Cylinder Material Isotropic and Incompressible

The displacement field (10) satisfies the first equation of Eqs. (6) and is thus admissible in an incompressible linear elastic body. Substitution for $u$ from Eq. (10) into the second equation of Eqs. (2) and the result in the second equation of Eq. (5) gives

$$T_{11} = T_{22} = T_{33} = -p, \quad T_{12} = 0$$

$$T_{13} = -\mu \tau X_2, \quad T_{23} = \mu \tau X_1$$  \hspace{1em} (17)

where the hydrostatic pressure $p$ is an arbitrary function of $X$. Substitution for $T$ from Eq. (17) into Eq. (1), or equivalently for $u$ from Eq. (10) into the second equation of Eqs. (6), yields

$$-p_{,1} + (\mu \tau)' X_2 = 0, \quad -p_{,2} + (\mu \tau)' X_1 = 0, \quad -p_{,3} = 0$$  \hspace{1em} (18)

The third equation of Eqs. (18) implies that $p$ is a function of $X_1$ and $X_2$ only. The first two equations of Eqs. (18) satisfy the compatibility condition $p_{,12} = p_{,21}$ only if Eq. (12) holds. Thus $p$ is independent of $X_1$ and $X_2$ also, and is a constant. The boundary condition [first
The torque $M_t$ applied at the end face $X_3 = L$ is given by Eq. (13), and when $\theta(0) = 0$ the angle of twist $\theta$ of the cross section $X_3 = constant$ by Eq. (14).

C. Cylinder Material Transversely Isotropic and Compressible

For the displacement field (10), the second equation of Eqs. (2) gives

$$e_{11} = 0, \quad e_{22} = 0, \quad e_{33} = 0, \quad 2e_{13} = -\theta'X_2$$

$$2e_{23} = \theta'X_1, \quad e_{12} = 0$$

Substitution from Eq. (20) into Eqs. (7) and (8) gives

$$T_{11} = 0, \quad T_{22} = 0, \quad T_{13} = 0, \quad T_{13} = -C_{44}\theta'X_2$$

$$T_{23} = C_{44}\theta'X_1, \quad T_{12} = 0$$

Substitution for $T$ from Eq. (21) into Eq. (1) yields Eq. (11) with $\mu = C_{44}$. Thus Eqs. (12–16) are valid for the torsion of a compressible transversely isotropic cylinder.

D. Cylinder Material Transversely Isotropic and Incompressible

We note that the strain field (2) is still valid and, when substituted into Eqs. (9) and (8), gives

$$T_{11} = -p, \quad T_{22} = -p, \quad T_{33} = -p, \quad T_{13} = -C_{44}\theta'X_2$$

$$T_{23} = C_{44}\theta'X_1, \quad T_{12} = 0$$

Equations (22) are the same as Eqs. (17) with $C_{44} = \mu$. Thus the torque $M_t$ applied at the end face $X_3 = L$ is given by Eq. (13), and the angle of twist of the cross section $X_3 = constant$ by Eq. (14).

IV. Conclusions

Analytical solutions are given to the problem of the torsion of a circular cylinder made of a functionally graded material with the material moduli a smooth function of the axial coordinate only. Thus by appropriately varying the shear modulus in the axial direction, one can adjust the angle of twist of any cross section.

Acknowledgment

This work was supported by Office of Naval Research Grant N00014-98-1-0300 to Virginia Polytechnic Institute and State University with Y. D. S. Rajapakse as the Program Manager. Views expressed in this Note are those of the author and not of the funding agency.

References


K. Shivakumar
Associate Editor