Abstract We have analysed the development of shear bands during the perforation of a steel plate by a massive rigid punch. The contact surfaces are modeled as smooth and the steel is modeled as a thermoviscoplastic material that hardens with an increase in the plastic strain and plastic strain-rate but softens due to the rise in its temperature. The effect of punch speed, the clearance between the punch and the back supports, and the radius of the periphery of the punch nose on the development of bands is delineated.

1 Introduction

Even though Tresca (1878) reported the development of shear bands during the hot forging of platinum more than a century ago, the activity in this field picked up since the time Zener and Hollomon (1944) observed 32 μm wide shear bands during the punching of a hole in a low carbon steel plate. Zener and Hollomon also pointed out that during the punching process, heat produced because of the intense plastic deformations of the material soften it and once this softening equals the hardening of the material due to strain and strain-rate effects, it becomes unstable. The study of shear bands is important because once these bands have developed, subsequent deformations of the body are concentrated in these narrow regions and the strength of the rest of the body is not fully utilized. Also, shear bands precede shear fractures and are the primary mode of failure in ductile materials under dynamic loading.

Subsequently Moss (1981) conducted tests similar to those of Zener and Hollomon (1944) and reported that strain-rates of the order of 10⁷/sec occur within the shear band. Chou et al. (1991) have performed controlled penetration tests and have measured the length of the band ahead of the punch surface.

Duffy and co-workers (1984, 1988) have measured the time-history of the temperature rise and the plastic strain during the development of a shear band in a thin-wall steel tube that is dynamically twisted. Other types of test specimens and loading conditions have been employed by Kalthoff (1987) and Mason et al. (1994).

Several investigators have analysed the initiation and growth of shear bands analytically and numerically; we refer the reader to the proceedings of three symposia edited by Zbib et al. (1992), Armstrong et al. (1994) and Batra and Zbib (1994) and a book by Bai and Dodd (1992) for a list of references on the subject. Here we use an adaptive mesh refinement technique to analyse the formation of shear bands during the perforation of a steel plate. It is found that the radius of the periphery of the nose of the punch has a noticeable effect upon the length of the band ahead of the punch surface. Also the clearance between the punch and the back supports affects significantly when a band initiates, and it determines the profile of the mantle of the plug ejected out of the plate. We note that there is no a priori defect introduced to initiate a shear band.

2 Formulation of the problem

We use a cylindrical coordinate system to analyse axisymmetric deformations of a steel plate impacted at normal incidence by a massive rigid cylindrical rod and assume that the contact surfaces are smooth; a schematic sketch of the problem studied is shown in Fig. 1 wherein dimensions of different parts are also given. We use an updated Lagrangian description of motion. Equations governing thermomechanical deformations of the steel plate are

\[(\rho \dot{v}) = 0, \]
\[\rho \dot{\varepsilon} = \text{Div} \mathbf{T}, \]
\[\rho \dot{\varepsilon} = -\text{Div} \mathbf{Q} + tr(TF^T). \]

Equations (1), (2) and (3) express, respectively, the balance of mass, balance of linear momentum and the balance of internal energy. In them \(\rho \) is the present mass density of a material particle whose mass density in the reference configuration is \(\rho_0 J = \det F \), \(F = \partial x(X, t)/\partial X \) is the deformation gradient, \(x(X, t) \) gives the position of the material particle \(X \) at time \(t \), \(v = \dot{x} \) gives the velocity of the material particle \(X \), a superimposed dot indicates the material time derivative, \(T \) is the first
Piola-Kirchhoff stress tensor, e is the specific internal energy, and Q the heat flux measured per unit reference area. The operator Div indicates the divergence operator with respect to coordinates in the reference configuration. Equations (1)–(3) are supplemented with the following constitutive relations.

\[\sigma = -p(\rho) \mathbf{1} + 2\mu \mathbf{D}, \quad p(\rho) = K (\rho/\rho_0 - 1) \quad (4) \]

\[2\mu = \frac{\sigma_0}{\sqrt{3}} (1 + bI)^m (1 - v\theta) \left(1 + \frac{\psi}{\psi_0} \right)^n, \quad 2I^2 = \text{tr}(\mathbf{D}\mathbf{D}^T), \quad (5) \]

\[\psi = 4\mu I^2 \left(1 + \frac{\psi}{\psi_0} \right)^n \sigma_{oo}, \quad \hat{D} = \mathbf{D} - \frac{1}{2} \text{tr} (\mathbf{D}) \mathbf{1}, \quad (6) \]

\[\mathbf{T} = f \sigma (\mathbf{F}^{-1})^T, \quad \mathbf{Q} = f q (\mathbf{F}^{-1})^T, \quad q = -k \text{grad} \theta, \quad (7) \]

\[\rho_0 \dot{\rho} = \rho_0 \dot{c} + \rho \dot{\rho}/\rho^2. \quad (8) \]

Here σ is the Cauchy stress tensor, K the bulk modulus, σ_0, the yield stress in a quasistatic simple tension or compression test, ψ an internal variable that describes the hardening of the material, k the thermal conductivity, c the specific heat and θ the rise in the temperature of a material particle. From (4), and (5), it follows that

\[(\frac{1}{2} \text{tr}(\mathbf{ss}^T))^{1/2} = (1 + bI)^m (1 - v\theta) \left(1 + \frac{\psi}{\psi_0} \right)^n. \quad (9) \]

That is the material obeys the von Mises yield criterion and the yield stress depends upon the strain-rate, temperature and the work-hardening parameter ψ. The constitutive relation (4), with μ given by (3), was first proposed by Batra (1988). In it, σ_0, b, m, v, ψ_0, and n are material parameters; b and m describe the strain-rate hardening of the material, v the thermal softening and ψ_0 and n its work-hardening. Once $(1 - v\theta)$ equals zero, the material behaves like an ideal fluid. We note that in our work the volumetric deformations are considered to be elastic, the distortional or shear deformations are taken to be plastic, there is no unloading considered, and a material point is assumed to deform plastically at all times; however, the plastic strain-rate is extremely small for low values of the effective deviatoric stress. Also, there is no failure or fracture criterion considered.

The plate is taken to be initially stress-free, at rest, at a uniform temperature and the initial work-hardening is set equal to zero. The rigid penetrator or the punch is assumed to be moving at a uniform speed V_e and is taken to be huge so that its speed can be assumed to be uniform during the perforation process.

Here we assume that all of the plastic working is converted into heating or equivalently have taken the Taylor-Quinney parameter equal to 1. Batra and Adulla (1994) have shown that a lower value of the Taylor-Quinney parameter delays the initiation of a shear band but has no effect on the qualitative nature of results.

For the boundary conditions we take $v = 0$ and $q \cdot n = 0$ at the plate particles abutting the rigid supports, and $(v \cdot n)n = V_e n$, $q \cdot n = 0$ at the smooth target/penetrator interface where n is a unit normal at a point on the interface. Thus the plate is assumed to be glued to the rigid stationary back supports and there is no interpenetration of the plate material into the punch. Should a gap develop between the plate and punch surfaces, the plate particles are assumed to be traction free and thermally insulated. Because of the rather very short time duration of the punching process, the assumption of no heat transfer from the target into either the supports or the penetrator is a reasonable one.

The above-stated problem is highly nonlinear and too difficult to solve analytically; therefore, we seek its approximate solution by the finite element method.

3 Computation and discussion of results

In order to compute numerical results, we assigned following values to various parameters for the steel.

- $\sigma_0 = 792 \text{ MPa}$, $K = 157 \text{ GPa}$, $b = 10000 \text{ sec}$,
- $v = 0.66 \times 10^{-7} \text{ °C}$, $m = 0.01$, $n = 0.09$, $k = 50 \text{ W/m °C}$,
- $\rho_0 = 7840 \text{ Kg/m}^3$, $\theta_0 = 25\text{ °C}$, $\psi_0 = 0.017$, $c = 477 \text{ J/Kg °C}$
In the computer code used to analyse the problem, the lumped mass matrix obtained by the row-sum technique is used. The element load vectors are evaluated by using the three-point quadrature rule. The coupled nonlinear ordinary differential equations obtained by using the Galerkin approximation are integrated by the forward-difference method which for linear problems is explicit and only conditionally stable. Because only volumetric elastic deformations are considered, the bulk wave speed is used to compute the time step size. Also, this time step size is checked against the critical time step size for the heat equation and the smaller of the two values is selected. After every time increment, the coordinates of nodes are updated and elements are checked for excessive distortion. If any interior angle of an element becomes less than 15°, the mesh is refined and the values of solution variables at the newly created nodes are interpolated from those at the nodes of the previous mesh. The mesh refinement subroutine of Batra and Ko (1992) is employed with the modification that the generated mesh is suitably graded. We recall that the goal of refining the mesh is to make \(A_{ij} \Omega \) nearly the same for each element in the mesh. Since this may generate a poorly graded mesh, the generated elements are suitably modified to create a proper

Fig. 2a–c. Deformed shapes of the plate and the refined meshes for subsequent computations when the penetration depth equals (a) 1 mm, (b) 3 mm, and (c) 5 mm; the penetrator speed is 50 m/s
grading of the mesh. The condition of impenetrability between
the target and penetrator particles is satisfied by using the
slideline algorithm of Hallquist et al. (1985); the rigid penetrator
or punch surface is regarded as the master surface and the
adjoining surface of the deformable plate as the slave surface,
node on it and elements sharing at least one side with the
penetrator/plate interface are called slave nodes and slave
elements respectively. After each time increment, we find
the normal acceleration of each slave node relative to the
master surface. If this relative normal acceleration points
away from the master surface, the node is released and is
presumed not to be in contact with the master surface during
the next time step. However, if the relative normal acceleration
of a slave node is towards the master surface and its distance
from the master surface is less than a preassigned small
number, the slave node is taken to be on the master surface
during the subsequent computations. We note that our method
of accounting for the contact at the target/penetrator interface
is a slight modification of that employed by Chen and Batra

Figures 2a, 2b and 2c depict the deformed shapes of the plate
and the adaptively refined meshes used during subsequent
computations when the penetration depth equals 1, 3 and
5 mm for an impact speed of 50 m/s. It is clear that significant
bending deformations of the plate occur. We add that
deformations of only one-half of the plate were analysed
even though sketches drawn are for the full plate. Around
the nose periphery, the target particles are separated from
the penetrator surface; this separation is a function of
the radius of the nose surface near its periphery. The plots
of the velocity distribution within the deforming plate region
indicate that at a penetration depth of 1 mm, the particles
move both in the axial and radial directions but at a
penetration depth of 5 mm and beyond, the target particles
ahead of the punch move axially with the speed of the punch.
As shown in Fig. 3, the axial velocity of particles decreases from
that of the punch to essentially zero over the distance between
the punch surface and the inner surface of the back rigid
supports. Thus for a clearance of 2 mm and a punch speed
of 50 m/s, the nominal strain-rate equals 25000/s and the
primary mode of deformation is shearing. Once all of plate
particles ahead of the punch surface move only axially, the
plug has formed and is subsequently extruded from the
plate. The temperature rise and deformed shapes of the
plate at penetration depths of 2, 4 and 5 mm are shown in
Figs. 4a, 4b and 4c respectively. These plots illustrate that
only narrow regions of the plate adjacent to the vertical
surface of the penetrator are heated up significantly. That these
regions are deformed severely becomes clear from the contours
of the work-hardening parameter \(\psi \) plotted in Fig. 5. We note
that values of \(\psi \) are proportional to the effective plastic
strain. A reasonable hypothesis is that fracture will occur along
the surface of maximum effective plastic strain or equivalently
that of maximum temperature. Thus the mantle of the plug
ejected out of the plate will not have straight vertical surfaces.
Results illustrated in Fig. 6 indicate that the shape of the plug
depends noticeably upon the radius of the nose periphery;
for a blunt nosed penetrator the mantle of the plug is essentially
straight but has rather sharply inclined surface when the radius
of the nose periphery is increased. Also the temperature rise
for a penetration depth of 5 mm is maximum for the blunt-nosed
penetrator.

Even though plate particles adjacent to the inner surface
of the back support are also deformed severely, these do not
seem to propagate into the plate. However, those of plate
particles near the nose periphery of the punch propagate into
the plate.

Batra and Zhang (1994) studied torsional deformations of
a thin tube and called the speed of propagation of the contour
of effective plastic strain of 2.0 as the speed of the shear band.
We note that in general, an exception being the torsional
deformations studied by Batra and Zhang, the computed speed
is a function of the value of the effective plastic strain, e.g.
see Zhu and Batra (1991). For the material model used herein,
the internal variable \(\psi \) is a measure of the work-hardening
and hence plastic strain at a material point. We have plotted
in Fig. 7 plate regions wherein \(\psi \) exceeds 1.5 when the
penetration depth equals 2.2 mm, 2.4 mm and 2.6 mm; from
these the average speed of propagation of the contour of \(\psi = 1.5 \)
is found to be 71.4 m/s. As was done by Chou et al. (1991),
we define the distance of the tip of the contour of \(\psi = 1.5 \)
from the penetrator nose surface as the shear band length,
and plot it versus the penetration depth in Fig. 8a for three
different values of the radius of the nose periphery. Thus an
increase in the value of the edge radius delays the initiation of
the shear band. Since the horizontal axis is proportional
to the time elapsed from the instant the punch just touched
the plate, the slope of these curves is proportional to the
band speed. Thus the band speed increases with the penetration
depth and is nearly independent of the edge radius. Recalling
that the formation and ejection of the plug essentially involves
shearing of this material from the rest of the plate material
resting on the rigid supports, one will conjecture that
the development of the shear band depends noticeably upon
the distance between the penetrator and the inner surface of
the support or the clearance between the penetrator and the
supports. Results plotted in Fig. 8b support this and indicate
that at least for the flat nosed penetrator the shear bands initiate
sooner and propagate faster as the clearance is reduced. The

![Fig. 3. Distribution of the non-dimensional axial velocity of plate particles that are 1 mm ahead of the punch nose surface when the penetration depth equals 1, 3 and 5 mm; the speed is non-dimensionalized with respect to that of the punch](image)
Fig. 4a – c. Distribution of the temperature rise in °C in the deformed plate when the penetration depth equals (a) 2 mm, (b) 4 mm, and (c) 5 mm.
Fig. 5a–c. Contours of the work-hardening parameter ψ in the deformed plate when the penetration depth equals (a) 2 mm, (b) 4 mm, and (c) 5 mm
The smallest value, 500 μm, of the clearance considered herein is approximately 10 times the width of the shear band observed experimentally (e.g., see Moss (1981)) in steels. Figure 8c depicts the length of the shear band ahead of a flat-nosed penetrator as a function of the penetration depth for different values of the penetrator speed. The effect of punch speed manifests itself through an increase in the nominal strain-rate and hence affects the material response. From these curves it is hard to quantify the dependence of the shear band length ahead of the punch surface upon the penetration speed. These results could not be compared with the test observations of Chou et al. (1991) because of the lack of values for material parameters. However, they agree qualitatively with those plotted in their Fig. 2.

Even though we have used adaptively refined meshes to compute results, it is possible that these depend upon the smallest element size specified during the mesh refinement; this has not been explored. One way to get mesh independent results is to use a thermoviscoplasticity theory that incorporates a material characteristic length, e.g., see Wright and Batra (1985), Batra (1987) and Aifantis (1984).

4 Conclusions
We have studied the dynamic axisymmetric thermomechanical problem involving the perforation of a steel plate by a huge punch whose speed can be regarded as constant during the perforation process. The effects of inertia forces and heat conduction are considered. It is found that after the punch has traversed a certain distance into the plate, plate particles ahead of the punch face essentially move as a rigid
Fig. 7. Dark areas indicate regions wherein the value of the work-hardening parameter ψ equals at least 1.5.

Fig. 8a - c. Effect of (a) the radius of the nose periphery, (b) the clearance between the punch and the supports, and (c) the punch speed, upon the length of the shear band ahead of the punch nose.

body and this region is sheared from the remaining plate material resting on the flat rigid supports. Only a narrow cylindrical region of the plate adjacent to the mantle of the punch is severely deformed and the intensely deformed region propagates ahead of the punch surface into the plate. The clearance between the penetrator and the back supports as well as the radius of the periphery of the punch nose affect noticeably when a shear band initiates and the length of the shear band ahead of the punch surface. The average shear band speed, defined as the axial speed of the contour of the work-hardening parameter equal to 1.5, is computed to be 71 m/s; this speed depends upon, among other factors, the depth of penetration and the clearance between the penetrator and the supports. The maximum temperature rise also depends upon these factors and for the flat nosed penetrator equals 93% of the melting temperature of the steel.

References

Mason, J. J.; Rosakis, A. J.; Ravichandran, G. 1994: Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch. Mech. Mat. 42: 1679–1697